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Greater electromyographic responses do not imply greater motor 1 

unit recruitment and ‘hypertrophic potential’ canno t be inferred 2 
 3 

 4 

We read with interest the study by Looney et al. (13), investigating the effects of load on 5 

electromyography (EMG) amplitude and rating of perceived exertion (RPE) during squats taken 6 

to muscular failure. There are numerous interesting takeaways from this study, including the 7 

similar RPE outcomes of different loads when sets are taken to failure; however, we demur with 8 

the authors’ interpretation of the findings. 9 

 10 

In the title and the body of the article, the term motor unit (MU) recruitment is used 11 

synonymously with EMG amplitude. This is an incorrect assumption, but regrettably a common 12 

mistake in sports and exercise science. We find this mistake being made especially when dealing 13 

with fatiguing and dynamic conditions, such as those investigated by Looney et al. (13). In fact, 14 

Enoka and Duchateau (7) recently described how numerous studies have misinterpreted surface 15 

EMG signals by inferring specific MU recruitment. More than two decades previously, De Luca 16 

(4) stated, “To its detriment, electromyography is too easy to use and consequently too easy to 17 

abuse.” Looney et al. (13) state that MU firing rate decreases with fatigue (10, 15) and 18 

consequently that the increase in EMG amplitude is caused by increased MU recruitment (19-21) 19 

and have applied that same logic to the subsequent interpretation of the findings, as the authors 20 

repeatedly state that the greater EMG amplitude observed in the heavier conditions is indicative 21 

of greater MU recruitment. Regrettably, the interpretation of EMG is not so straightforward. 22 

Moreover, different quadriceps muscles may utilize different neural strategies to maintain force 23 
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generation during repeated concentric contractions (6), which makes the findings of Looney et 24 

al. (13) particularly difficult to interpret.  25 

 26 

Although EMG amplitude is influenced by MU recruitment, MU recruitment cannot be inferred 27 

from changes in surface EMG amplitude. The recruitment threshold of high threshold MUs is 28 

reduced during sustained, fatiguing contractions (1) and the subsequent recruitment of these 29 

MUs assists in the maintenance force production. However, MU cycling may momentarily de-30 

recruit fatigued MUs in order to reduce fatigue (22). This means that, in scenarios that require 31 

less force output, such as low-load conditions, there may be lower simultaneous MU recruitment 32 

compared to high-load conditions. Ultimately, a comparable complement of the MU population 33 

of a particular muscle may be recruited, but not simultaneously as in high-load conditions. This 34 

would explain the observation of reduced peak EMG amplitude in low-load training, as reported 35 

by Looney et al. (13). These factors, including the reduced recruitment threshold of high 36 

threshold MUs, in addition to MU cycling during fatiguing contractions, may also explain other 37 

recent work showing differences in peak amplitude measured during surface EMG for high- and 38 

low-load conditions (12, 16). 39 

 40 

EMG amplitude during fatiguing conditions can be extraordinarily misleading, as EMG 41 

measures consist not only of multiple neural components (MU recruitment, rate coding, and 42 

possibly MU synchronization), but also of multiple peripheral constituents: muscle fiber 43 

propagation velocity and intracellular action potentials (5). Intracellular action potentials are of 44 

particular interest during fatiguing conditions, as the ensuing increase in length of intracellular 45 

action potentials may augment surface EMG signals, despite a decrease in intracellular action 46 
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potential magnitude. These inherent limitations make it impossible to discern MU recruitment 47 

from increases in EMG amplitude during fatiguing, dynamic conditions (2, 5, 8, 9). It may be 48 

true that greater loads induce greater MU recruitment, but in order to measure this, more 49 

advanced methods are needed, such as spike-triggered averaging (3) or initial wavelet analysis 50 

followed by principal component classification of major frequency properties and optimization 51 

to tune wavelets to these frequencies (11).  52 

 53 

In addition to our concerns regarding the confusion of EMG amplitude with MU recruitment, we 54 

note that inferring chronic adaptations from acute, mechanistic variables is very difficult. Looney 55 

et al. (13) suggest that their findings support the use of heavier loads for hypertrophy. Such a 56 

conclusion is unwarranted, as the literature does not currently differentiate between the long-57 

term effects of heavy and light loads on increases in muscular size (18). Data from Mitchell et al. 58 

(14) also demonstrated comparable growth of type I and II fibers following 10 weeks of strength 59 

training at either low (30%-1RM) or high-loads (80%-1RM). If the differential EMG amplitude 60 

between high and low-load training observed by Looney et al. (13) and others (12, 16) is 61 

representative of greater recruitment of presumably high threshold MUs, then one would expect 62 

a differential hypertrophic response between low and high threshold MUs, which is presently not 63 

supported. In fact, from an evidence-based perspective, Schoenfeld et al. (18), in their meta-64 

analysis, showed no difference between studies that have employed lighter or heavier loads to 65 

induce hypertrophy. A recent study by the same author confirmed that this was true even in well 66 

trained participants (17). Thus, longitudinal trials are clearly needed to elucidate these 67 

mechanisms, in addition to comparing individual loading with combined loading schemes. 68 

 69 
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The findings of Looney et al. (13) provide more data that unequal EMG amplitudes are obtained 70 

during fatiguing contractions with low- and high-load conditions and the novel finding that both 71 

conditions elicit similar RPE. What these data do not provide, however, is evidence that heavier 72 

load contractions recruit more MUs and that this can be inferred to result in greater hypertrophy. 73 

We hope that our letter helps put these findings into a clearer perspective.  74 
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