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1 Greater electromyographic responses do not imply gater motor
2 unit recruitment and ‘hypertrophic potential’ canno t be inferred
3
4

5 We read with interest the study by Looney et aB)(linvestigating the effects of load on
6 electromyography (EMG) amplitude and rating of pered exertion (RPE) during squats taken
7 to muscular failure. There are numerous interestakgaways from this study, including the
8 similar RPE outcomes of different loads when setstaken to failure; however, we demur with
9 the authors’ interpretation of the findings.
10
11 In the title and the body of the article, the temotor unit (MU) recruitment is used
12 synonymously with EMG amplitude. This is an incatrassumption, but regrettably a common
13 mistake in sports and exercise science. We firglithstake being made especially when dealing
14  with fatiguing and dynamic conditions, such as éhowestigated by Looney et al. (13). In fact,
15 Enoka and Duchateau (7) recently described how mumestudies have misinterpreted surface
16 EMG signals by inferring specific MU recruitmentoké than two decades previously, De Luca
17 (4) stated, “To its detriment, electromyographyae easy to use and consequently too easy to
18 abuse.” Looney et al. (13) state that MU firingeradecreases with fatigue (10, 15) and
19 consequently that the increase in EMG amplitudmised by increased MU recruitment (19-21)
20 and have applied that same logic to the subseqatmpretation of the findings, as the authors
21 repeatedly state that the greater EMG amplitudervks in the heavier conditions is indicative
22 of greater MU recruitment. Regrettably, the intetption of EMG is not so straightforward.

23  Moreover, different quadriceps muscles may utiifiéerent neural strategies to maintain force
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24 generation during repeated concentric contract{épswhich makes the findings of Looney et
25 al. (13) particularly difficult to interpret.

26

27  Although EMG amplitude is influenced by MU recrugnt, MU recruitment cannot be inferred
28 from changes in surface EMG amplitude. The recreitirthreshold of high threshold MUs is
29 reduced during sustained, fatiguing contractionsaiid the subsequent recruitment of these
30 MuUs assists in the maintenance force productionwé¥er, MU cycling may momentarily de-
31 recruit fatigued MUs in order to reduce fatigue)(ZBhis means that; in scenarios that require
32 less force output, such as low-load conditions,ettmeay be lower simultaneous MU recruitment
33 compared to high-load conditions. Ultimately, a pamable complement of the MU population
34  of a particular muscle may be recruited, but notudianeously as in high-load conditions. This
35 would explain the observation of reduced peak EMgplaude in low-load training, as reported
36 by Looney et al. (13). These factors, including tieeluced recruitment threshold of high
37 threshold MUs, in addition.to MU cycling during if@iing contractions, may also explain other
38 recent work showing differences in peak amplitugsasured during surface EMG for high- and
39 low-load conditions (12, 16).

40

41 EMG amplitude during fatiguing conditions can betraardinarily misleading, as EMG
42 measures consist not only of multiple neural congods (MU recruitment, rate coding, and
43 possibly MU synchronization), but also of multipfgeripheral constituents: muscle fiber
44  propagation velocity and intracellular action paigs (5). Intracellular action potentials are of
45 particular interest during fatiguing conditions,the ensuing increase in length of intracellular

46 action potentials may augment surface EMG sigraddspite a decrease in intracellular action
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47  potential magnitude. These inherent limitations engkimpossible to discern MU recruitment
48 from increases in EMG amplitude during fatiguingndmic conditions (2, 5, 8, 9). It may be
49 true that greater loads induce greater MU recruitmbut in order to measure this, more
50 advanced methods are needed, such as spike-tiggeeeaging (3) or initial wavelet analysis
51 followed by principal component classification ofjor frequency properties and optimization
52 to tune wavelets to these frequencies (11).

53

54  In addition to our concerns regarding the confugibEMG amplitude with MU recruitment, we
55 note that inferring chronic adaptations from acutechanistic variables is very difficult. Looney
56 et al. (13) suggest that their findings support use of heavier loads for hypertrophy. Such a
57 conclusion is unwarranted, as the literature dagiscarrently differentiate between the long-
58 term effects of heavy and light loads on increasesuscular size (18). Data from Mitchell et al.
59 (14) also demonstrated comparable growth of tygedl Il fibers following 10 weeks of strength
60 training at either low (30%-1RM) or high-loads (8A%M). If the differential EMG amplitude
61 between high and low-load training observed by leyoret al. (13) and others (12, 16) is
62 representative of greater recruitment of presumalgiz threshold MUs, then one would expect
63 a differential hypertrophic response between lod laigh threshold MUs, which is presently not
64 supported. In fact, from an evidence-based persgecSchoenfeld et al. (18), in their meta-
65 analysis, showed no difference between studieshiat employed lighter or heavier loads to
66 induce hypertrophy. A recent study by the sameautbnfirmed that this was true even in well
67 trained participants (17). Thus, longitudinal siahre clearly needed to elucidate these
68 mechanisms, in addition to comparing individuadiog with combined loading schemes.

69
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70 The findings of Looney et al. (13) provide moreadtitat unequal EMG amplitudes are obtained
71 during fatiguing contractions with low- and highatb conditions and the novel finding that both
72 conditions elicit similar RPE. What these data @b provide, however, is evidence that heavier
73 load contractions recruit more MUs and that this lba inferred to result in greater hypertrophy.
74  We hope that our letter helps put these findings &clearer perspective.
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